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LETTER TO THE EDITOR 

Electron correlations and fractional quantum Hall states in 
a double-layer electron system 

N F Johnson and S C Benjamin 
Physics Dewment, Oxford University, Oxford OX1 3PU, UK 

Received 30 January 1995 

Abstract. An andytically solvable few-elecmn model of a double-layer electron system is 
prewted which includes mixing with all Landau levels. Inter-layer conelations are found to 
give rise to novel ground states which differ fundamentally from previously suggested Jastrow- 
like wavefunctions for double layer N-elecVon systems, Comparison with experimental data 
suggests that these States may represent small-N precursors of recently observed fractional 
quantum HaIl.states in double-layer (large-N) systems. 

An exciting recent development in the field of low-dimensional electron gases is the 
experimental discovely in doublelayer electron systems of novel fractional quantum Hall 
effect (FQHE) states at 1 and $ filling per layer 11, 21. For a single layer, the intra-layer 
correlations giving rise to ground states at observed filling fractions l / m  (m odd) can be 
modelled using Jastrow wavefunctions [3]. In a double-layer system, the ground state will 
also depend on inter-layer correlations [4, 51. Due to the intractability of the N-electron 
problem, all previous cluster (i.e. small-N) calculations on the double-layer system have 
been numerical and computationally, intensive; results have been reported for as few as 
N = 6 electrons (three electrons per layer). Such studies investigate the form of the resulting 
N-electron wavefunction by means of numerical overlap with known (usually Jastrow-like or 
so-called Greek-Roman) analytic forms and are usually limited to the lowest Landau level. 
This paper seeks to investigate directly the analytic form of the double-layer correlated 
N-electron wavefunction by means of an analytically solvable few-electron model which 
includes mixing with all higher Landau levels. We find that inter-layer interactions give 
rise to a series of novel correlated ground states. The analytically obtained wavefunctions 
for these ground states are fundamentally distinct from previously proposed Jastrow forms. 
As with all cluster studies, the results of our sma l l4  model cannot be guaranteed to carry 
over to the IargeN limit; however a companison with experimental data on the double-layer 
FQHE [ 1 ] suggests that these novel ground states may indeed represent small-N precursors 
of the recently observed fractional states. 

As in various other cluster studies (e.g. [6]) we take the electrons as moving within each 
layer (xy plane) in a two-dimensional parabolic potential Awo, subject to a magnetic field 
B along the z direction. The two layers labelled by a = 1.2 have separations along z. We 
neglect inter-layer tunnelling of the electrons and assume strong z direction confinement 
within each layer (electrons frozen in lowest z subband). These are reasonable starting 
approximations for the AT&T doublelayer samples [I]. We consider the effect of just two 
electrons per layer. The resulting four-electron model, which will be solved analytically, 
contains just one electron less per layer than several recent numerical calculations [4]; 
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it is the smallest-N model exhibiting both inter-layer and intra-layer electron-electron 
interactions. With a symmetric gauge, the four-electron Hamiltonian is H = HO + V with 

where pi,= and qOl are the electron momentum and position in the xy plane with i = 1,2. 
Each electron has effective mass m', z component of angular momentum ,&, and 
becomes spin-polarized for the B fields of interest. The cyclotron frequency is wc and 
wi(B)  = m; + 0:/4. We take the electron-eleclron interaction potential to be of inverse- 
square form 

where ,!3 is a positive parameter. The inverse-square interaction for a single layer gives 
quantitatively similar results to the bare Coulomb interaction [7]. We introduce coordinates 
ZLI = f xi,, qU (centre-of-mass), % = 2-1 /2 (~~ , j  - ~2.1 )  (relative coordinate in layer I), 

~ 2 . 2 ) )  (relative coordinate between centres-of-mass for layers 1 and 2) together with the 
corresponding momenta qi. This transformation leaves Ho unchanged. We now make the 
assumption that the average separation between electrons in the xy plane is less than the 
layer separation s. The second (i.e. inter-layer) term in (2)  can hence be expanded as an 
infinite Taylor series in @Is)', where r =  IT^,^ - ~j..,l, with nth term przn-2/s". 

We first consider a large enough layer separation s such that this Taylor series can be 
truncated at its second term, hence becoming p/sZ-,6r2/s4. The Hamiltonian H becomes 

213 = 2 - 1 / 2 ( ~ 1 , 2  - ~ 2 . 2 )  (relative coordinate in layer 2), U? = g ( ( q , i  1 + ~ 2 . 1 )  - (qZ + 

HI and H4 ace Hamiltonians for a single electron in a parabolic potential mi and magnetic 
field B ;  HZ and H3 are Hamiltonians for an electron pair moving in a parabolic potential 
oi and magnetic field B with inversesquare interaction of strength 812. The potentials 
01 = W O ,  wz = ( m i  - 4 @ / m * ~ ~ ) ~ / '  = w3, and 04 = (w; - 8B/m*s4)'/'. Each Hi (and 
hence H) is exactly solvable analytically. The total energy E is E:=, E?. Here E1 and E4 
are well-known one-electron spectra with angular momenta ml and m4. For i = 2, 3 

where ni and mi are integers[7]; here w;(B) = C$ + &4. The lowest energy states E have 
ni = 0 = ml = m4, but may have relative angular momenta m2 and m3 greater than zero 
since E2 and.E3 have minima atfiite m - (,9m*/hz)1/2(wc/2w2). The total ground state 
angular momentum J = mz + m3; m2 and m3 must be odd to satisfy the autisymmetry 
requirement. (Zero inter-layer tunnelling implies that electrons in different layers are 
effectively distinguishable). The sequence of ground states Imz, m3) with increasing B field 
is 11, l) ,  13, 3), 15,5), . . . , In, n). We will now attempt to identify an effective filling factor 
for these states in our small-N system. A recent study has concluded that an appropriate 
definition of an effective filling factor U in small-N systems is Y = (N - I)/"= where 
mmar is the maximum possible single-electron angular momentum [SI. Hence for each 
layer U = l / m m  181; the total effective filling factor of the two-layer system is therefore 
v = E, U, where V I  = I /mz and v2 = l/m3. The resulting ground state sequence for total 
v is 2, 213, 215 which is actually consistent with observed fractions for two distant planes 
(e.g. sample D in [ 1 I). 

Ej = hwi(B)(Zni + ((Bm*/h2) +m:)Ip + 1) - mihw,/2 (4) 
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For smaller values of the layer separation s we must include the next term in the inter- 
layer Taylor expansion, given by ,9f({ui])/s6 where f([ui)) is a sum of six terms of 
the form (U; . ui)(uj . uj) and three of the form (ut . uj)'. All these produce energy 
perturbations, but only the latter give rise to significant wavefunction mixing (NB: V 
conserves J ) .  In particular, (w . U# mixes the previously degenerate states 13, 1) and 
II,3) (also 13,5) and 15,3), . . . In, n + 2 )  and In +2, n)). This mixing yields two entangled 
states 13, I)+ - (13, 1) + 11.3)) and 13, 1)-~ - (13. 1) - Il,3)), and similarly for In +2, n)*. 
The energies of /n  + 2, n)+ are found analytically using~degenerate perturbation theory [9]. 
For any n, a range of B fields exist where ln+2, n)- lies below both In, n )  and ln+2, n+2) .  
To obtain the total U for these states, we employ U, = I/mn where rit, is the average m 
in layer a. For 13, I)-, rit, = i(3) + i (1)  = 2 and the total U = i + 1 = 1. For 15,3)-, 

Figure l(a) shows the energy curves for the eigenstates In, n )  and In + 2, n)-  as a 
function of B for our small-N model. Figure l(b) gives the experimental results for the 
(large-N) double-layer electron system (adapted from figure 1 of [I]). Our model parameters 
are chosen to be consistent with the experiment. The sample electron density is loL' 
We only have two electrons per layer but can approximate such a density by choosing the 
xy  parabolic potential Awo = 0.8 meV, this gives an average density across the electron 
distribution of - 10" cm-'. The full width of the double-layer structure is 391 A [l]. 
Choosing s = 391 A partially compensates for wavefunction spread along the z direction 
in the experiment; it is also consistent with our earlier assumption that the average xy  
electron-electron separation be less than s. The parameter ,9 is chosen so that the inverse- 
square interaction coincides with the Coulomb interaction at r - 30A. It turns out that the 
qualitative features of figure I(a) are fairly insensitive to changes in ,8 and fiw. 

Considering the simplicity of our analytic model and the obvious limitations of such a 
small-N analysis, there is a surprising correspondence between the positions of the observed 
FQHE states and the occurrence of the theoretical ground states. For example, figure l(a) 
sugests the U = $ state will occur near B = 9 T (i.e. B value of the largest 15,3)- 
excitation gap) and~disappear for T - 0.5 K. This corresponds well to figure l(b). If B is 
increased beyond 10 T (not shown) the lni-2, n)-  states eventually exclude the In, n )  states 
from becoming ground states. The theory therefore suggests that certain small U fractions 
(e.g. 1) which occur for two distant layers may be absent for intermediate s. The inset 
in figure l(a) shows how the regions of stability of the theoretical ground states vary as s 
increases. As found experimentally the U = 1 and U = states rapidly lose their stability, 
leaving just the sequence U = 2, i, 3 ,  . . . for large s. 

Figure 2 compares the charge densities for the analytically obtained eigenstates 13,3) 
and 13, I)-. Each plot gives the charge density for one layer, say layer 1, with the electrons 
in layer 2 fixed in the classical configuration for a single layer (diametrically opposite each 
other on the x axis at y = 0). For 13,3), the electrons in layer 1 show no visible correlation 
with those in layer 2. For 13, 1)-, the electrons in layer 1 become localized along x = 0 in 
an effort to minimize the inter-layer electrostatic energy; the four electrons are approaching 
the classical 'crystal-like' configuration of a square in the xy  plane (as viewed along z). 
This behaviour  of^ no correlation for In, n )  and correlation for In + 2, n)-  repeats as IZ 
(i.e. B )  increases with the In + 2, n)-  distribution becoming increasingly point-like (i.e. 
classical). The states In + 2. n)- eventually dominate at high B ;  it is however remarkable 
that the classical configuration is not approached monatonically with increasing B field. 
Interestingly, the possible experimental observation of a bilayer Wigner crystal at U = 4 
has recently been reported in a wide quantum well [IO]. 

, = 1 + 1 - 1  
4 4 - 2 .  
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B field (Tesla) 
Figure 1. (a) Theoretical energies (measured in Kelvin relative IO an arbitrary zero) for 
eigenstotes In, n) (solid lines) and In i-2, n)- (dashed lines) as a function of B. Lowest curve at 
a given B gives ground state. Parameters given in text. Effective Y values for each ground state 
(see text) are identical to the experimental filling factors directly below in figure l(b). Ground 
states 11. 1) (v  = 2; B - 2 - 3 TI and 15,s) (v  = $; B z 10 T) are off-sale. Inset shows 
B-field ranges of stability of these states with increasing S. with increasing s. v = 2, 
(white regions) remain stable. (b) Experimental results for diagonal resistivity at T = 0.15 K 
(from lgure I of [I]). For clarity, Hall resistivity is not shown. 

and 

Figure 3 compares the charge densities of the analytically obtained U = 1 eigenstate 
13, 1)- and the Jastrow, or so-called Greek-Roman, (111) wavefunction[4]. Compared 
with the eigenstate 13, 1)-, the (11~1) form overestimates the inter-layer correlation since 
it essentially treats all four electrons as if they occupied the same layer; it also lacks any 
explicit s dependence. The fundamental distinctions between the two wavefunctions show 
up in their functional forms. The (unnormalized) wavefunction In + 2, n)- written in polar 
coordinates ( u 2  = (UZ, 92) etc) becomes 
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Figure 2. Charge density of electmns in a given Figure 3. Charge density contours of elecmns 
layer for (a) eigenstate 13, 3) and (b) eigenstate 13. I ) - .  in a given layer far (a) analytically obtained Y = 
ElecVons in the other layer are fixed diametrically 1 eigenstate 13, 1)- and (b) Greek-Roman (111) 
opposite each other at x = + I .  y = 0 as indicated wavefunction. Electrons in the other layer are fixed 
schematically. Parameters as for figure 1 diametrically appasite each other (shown by x )  as in 

figure 2. Parameten as for figure 1. 

multiplied by exp[-!&(ol(B)u: + o ~ ( B ) u $  + q ( B ) u :  + oq(B)u:) ] .  Note that q ( B ) ,  
w, (B)  and oq(B) are s dependent. The powers of the U in (5) are irrational and the 
wavefunction includes mixing with all Landau levels (i.e. contains z and z* [ll]). This is 
in contrast to the (Jastrow) Greek-Roman functions which are built from the lowest Landau 
level (i.e. functions of z [4]). To compare directly with the Greek-Roman form, we define 
z. I - -  - Jri.Jeu,' and q i l  = Iri.21ei*.2. Since the Greek-Roman form is actually an eigenstate 
of the non-interacting double-layer system, we must also take the limit of vanishingly small 
interaction (,9 + 0). In this limit, ( 5 )  formally becomes 

n (zi - Z ~ Y '  n (zril - ~ [ j l ) *  - n (zi - Z j Y  n (z[ i l  - ~ [ j l ~ '  (6) 
I hi< j<Z  I < i < j < 2  I < i < j < 2  l h i < j < 2  
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with nr = n i- 2. The (mmn) Greek-Roman form is 

and is fundamentally different from the entangled form of (6) and hence (5). 
We finish by emphasizing that although our study only considers small N, the present 

results do represent the first analytically obtained solutions to a double-layer electron 
problem containing both intra- and inter-layer interactions. 

This work was supported by the Nuffield Foundation (NFJ) and by an EPSRC Studentship 
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